

Acknowledgments

Institutional partners

Collaborating partners

Ysaline Bacon,^{1,2,5} Mafalda M. Miranda,¹ Jasmin Raymond,¹ Juliet Newson,² Andrew Wigston,³ Matthew Minnick,⁴ Dave Lovekin,⁵ David Mitchell,⁵ Emily Smejkal,⁵ Leighton Gall,⁵ Alex Cook,⁶ Scott Janzwood⁵

¹Institut national de la recherche scientifique, Québec, Canada; ² Reykjavík University, Reykjavík, Iceland;

³Natural Resources Canada, Ottawa, Canada; ⁴RESPEC, Rapid City, USA; ⁵Cascade Institute, Victoria, Canada; ⁶Qulliq Energy Corporation, Baker Lake, Canada

Author

Ysaline Bacon is a researcher with the Ultradeep Geothermal team at the Cascade Institute. Her research combines field studies, resource assessment, and reservoir modelling to support the energy transition in remote northern communities. She is a master's student in Earth Sciences and Renewable Energy at INRS (Quebec, Canada) and Reykjavík University (Iceland), focusing on the deep geothermal potential of Baker Lake (Qamani'tuaq) in Nunavut.

Sharing and permissions

© 2026 Cascade Institute. This report is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, provided appropriate credit is given to the original author and source, a link to the license is provided, and any changes made are indicated. To view a copy of this license, visit <http://creativecommons.org/licenses/by/4.0/>

Exceptions: Certain images, figures, and other third-party materials are reproduced in this report under separate licenses or with specific permissions. Such materials are clearly indicated in the figure captions and are not covered by the Creative Commons license of this publication. Users must seek permission from the rights holders for any reuse of these materials outside the scope of their respective licenses.

Cover image: Houses in Baker Lake, Nunavut, by Paul Gierszewski, [CC-BY-SA-4.0](https://creativecommons.org/licenses/by/4.0/).

Suggested citation: Bacon, Y. (2026). *Geothermal Potential in Baker Lake, Nunavut: Research to support enhanced geothermal systems in Northern remote communities*. Version 1.0. Cascade Institute. <https://doi.org/10.5281/zenodo.1837895>

ΛΓΔΔΣΑ

Foreword

This report provides an insightful and timely assessment of geothermal resource potential in Baker Lake. It also represents an essential contribution to ongoing discussions about the community's long-term energy future. By carefully evaluating subsurface conditions, temperature gradients, and associated uncertainties, the study offers a valuable technical foundation for understanding geothermal energy as one option within a broader portfolio of clean energy solutions.

From a community perspective, the value of this work lies not only in its technical findings but also in the opportunity it creates for informed, grounded decision making. The analysis helps situate geothermal energy alongside other technologies, such as solar, wind, and hybrid systems, enabling the community and decision makers to better understand relative levelized costs, technical risks, and practical constraints. In that sense, the report supports an evidence-based discussion of which pathways are most appropriate, feasible, and beneficial for Baker Lake over the long term.

At the same time, it is essential to recognize that technical feasibility alone is not sufficient when considering major energy infrastructure projects, particularly those involving subsurface resource development. From a Nunavut Inuit perspective, such projects must ultimately be framed around Inuit self-determination, community ownership, and the delivery of long-term social and economic benefits. While this report was not intended to address governance or ownership models in detail, those considerations are essential as discussions move from resource assessment toward potential implementation.

Future exploration of geothermal energy in Baker Lake should therefore be guided by Inuit leadership and aligned with community priorities, including local ownership of infrastructure, long-term employment and training opportunities for Inuit, and reinvestment of benefits into community services and well-being. Significant capital investments in energy

infrastructure should also be considered alongside complementary investments in housing, food security, health, and other critical social infrastructure, ensuring that energy projects function as enablers of broader community resilience rather than stand-alone technical solutions.

This report should be viewed as a starting point that provides valuable insight into geothermal potential and its limitations, particularly with respect to heat applications versus electricity generation. It creates space for further dialogue, more detailed techno-economic analysis, and community-led discussion about next steps. In that regard, it offers real value to Baker Lake by supporting informed, thoughtful consideration of clean energy options that reflect both the technical realities of the North and the community's values, priorities, and aspirations.

Alex Cook

Energy Champion for Baker Lake, Nunavut

Executive summary

Nunavut is a vast, self-governed Inuit territory, home to 25 Inuit communities, where energy sovereignty remains a key challenge. Not connected to the rest of North America by road, rail, or electricity transmission line, people rely entirely on fossil fuels, shipped in once a year by boat, for both space heating and electricity. This dependency leads to high costs, logistical vulnerabilities, and environmental risks, while limiting local control over energy decisions.

In this context, Inuit leaders and local organizations are seeking to bolster their energy security by identifying local and sustainable energy alternatives that are adapted to the Arctic environment. Geothermal energy, which harnesses heat from deep within the Earth to generate renewable heat, electricity, or both, is one promising option.

The hamlet of Baker Lake (also known as Qamani'tuaq), which marks the geographic centre of Canada, is the only inland community in Nunavut. It sits on the Canadian Shield, a region made up of some of the oldest rocks on Earth. Based on limited data, earlier national assessments suggested a low geothermal potential for this area, due mainly to low average geothermal gradients. Our research, however, reveals higher-than-expected subsurface temperatures, opening possibilities for a deep geothermal development.

To assess this potential, Qulliq Energy Corporation, Nunavut's public power utility, partnered with RESPEC, a consulting and engineering services firm, to drill a 500-metre-deep borehole near Baker Lake in 2022. This project aimed to better evaluate the geothermal resource. The data collected include a downhole temperature profile and numerous core samples, which were later analyzed at the Institut National de la Recherche Scientifique (INRS), CanmetENERGY, and RESPEC laboratories.

Using these borehole data, I conducted a geothermal resource assessment in collaboration with CanmetENERGY, Qulliq Energy Corporation, and RESPEC. We estimated underground temperatures down to 10 km using statistical methods. Our results, summarized here and presented in detail in Bacon et al. (2024), show that subsurface temperatures are higher than previously expected, suggesting that Baker Lake could host a deep geothermal system.

ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ Ազգային և ազգային համարակալի հարաբերությունների մասին օրենք

In this context, *deep geothermal* refers to systems accessing heat stored several kilometres below the surface, typically deeper than 3 km. This document provides a non-technical overview of that study to make its findings accessible to a broader audience.

Given the low-porosity, low-permeability crystalline rocks of the Canadian Shield, we focus on enhanced geothermal systems (EGS), which increase rock permeability through hydraulic stimulation to circulate water and extract heat. While still an emerging technology, enhanced geothermal systems could make it possible to tap into geothermal energy in regions like Nunavut, previously considered unfeasible.

This study finds that a 4-km-deep well pair to power a new district heating system could meet the space-heating needs of the community. If drilling reached 7-8 km, electricity generation sufficient to power the entire community may also be possible.

For Baker Lake, this could mean more than energy alone: a community-owned geothermal system could strengthen local governance over energy resources, create long-term jobs in operations and maintenance, and reinvest savings into priorities like housing or cultural infrastructure.

However, many uncertainties remain, especially regarding naturally occurring and engineered subsurface permeability in a deep, high-pressure in-situ regime. Further research is needed to assess the technical and economic feasibility of a geothermal system in Baker Lake. This includes reservoir modelling and collecting more site-specific data using techniques such as scanline fracture surveys, hydraulic testing, deeper drilling, or geophysical imaging. To ensure alignment with Inuit values and priorities, further research must integrate community-led approaches such as collaborative community consultation to incorporate local knowledge and priorities. Geothermal pilot projects should be community designed, led, and owned to ensure skills and benefits remain in the community.

Investing in enhanced geothermal and deep drilling research in the Canadian Shield, along with small-scale pilot projects, could help remote Northern communities determine for themselves whether geothermal energy is a viable means of achieving energy security.